Carbon ligands have long played an important role in organometallic chemistry. However, previous examples of all‐carbon chelating ligands are limited. Herein, we present a novel complex with an eleven‐atom carbon chain as a polydentate chelating ligand. This species was formed by the [2+2+2] cycloaddition reaction of two equivalents of an alkyne with an osmapentalyne that contains the smallest carbyne bond angle (127.9°) ever observed. Density functional calculations revealed that electron‐donating groups play a key role in the stabilization of this polydentate carbon‐chain chelate. This process is also the first [2+2+2] cycloaddition reaction of an alkyne with a late‐transition‐metal carbyne complex. This study not only enriches the chemistry of polydentate carbon‐chain chelates, but also deepens our understanding of the chelating ability of carbon ligands.Carbon ligands have long played an important role in organometallic chemistry. However, previous examples of all‐carbon chelating ligands are limited. Herein, we present a novel complex with an eleven‐atom carbon chain as a polydentate chelating ligand. This species was formed by the [2+2+2] cycloaddition reaction of two equivalents of an alkyne with an osmapentalyne that contains the smallest carbyne bond angle (127.9°) ever observed. Density functional calculations revealed that electron‐donating groups play a key role in the stabilization of this polydentate carbon‐chain chelate. This process is also the first [2+2+2] cycloaddition reaction of an alkyne with a late‐transition‐metal carbyne complex. This study not only enriches the chemistry of polydentate carbon‐chain chelates, but also deepens our understanding of the chelating ability of carbon ligands.
URL link for article: https://onlinelibrary.wiley.com/doi/10.1002/anie.201713391