C-H Bond Activation and Subsequent $C(sp^2)-C(sp^3)$ Bond Formation: Coupling of Bromomethyl and Triphenylphosphine in an Iridium Complex

Yumei Lin, Hui Xu, Lei Gong, Ting Bin Wen, Xu-Min He,* and Haiping Xia*

State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China

Received March 9, 2010

Treatment of HC=CCH(OH)CH=CH₂ with [IrHCl(CO)(PPh₃)₃]BF₄ at room temperature afforded an iridacyclohexadiene, [Ir(CH=C(PPh₃)CH=CHCH₂)Cl(CO)(PPh₃)₂]BF₄ (1). The reactivity of complex 1 had been investigated. Reaction of 1 with 1 equiv of bromine produced an iridacyclopentadiene, [Ir(CH=C(PPh₃)CH=C(CH₂Br))Cl(CO)(PPh₃)₂]BF₄ (2). When excess bromine was used, iridacyclopentadiene 2 underwent subsequent intramolecular $C(sp^2)-C(sp^3)$ coupling between the exocyclic $-CH_2Br$ group and a phenyl of the PPh₃ ligand, leading to the formation of a fused iridacycle complex,

 $[Ir(CH=C(PPh_3)C(Br)=C(CHBr))(P(C_6H_4)Ph_2)Cl(CO)PPh_3]Br_3$ (3). A mechanism for the formation of complex 3 starting from 1 was proposed, in which the process involved a triple C-H activation as well as a rare $C(sp^2)-C(sp^3)$ reductive elimination.

Introduction

The formation of carbon–carbon bonds is at the heart of the synthesis of organic compounds. Activation of a C–H bond and subsequent C–C bond formation mediated by transition-metal complexes are extremely significant topics and have attracted increasing attention recently.^{1,2} Among various strategies to C–H bond activation and C–C bond-forming, chelation assistance utilizing cyclometalation is considered to be one of the most promising ways.³

First- and second-row transition-metal complexes of group VIII have been widely used as catalysts for the C–C bond formation involving cyclometalation. However, progress with third-row transition-metal complexes as catalysts lags far behind.⁴ This is probably due to the difficulty of C–C reductive elimination from a third-row

(4) Takeuchi, R.; Kezuka, S. Synthesis 2006, 20, 3349.

pubs.acs.org/Organometallics

transition-metal center, which is expected to be the critical bond-forming step in coupling reactions, since the metal–carbon bond in a third-row transition-metal complex is believed to be thermodynamically more stable than that in a first- or second-row transition-metal complex.^{5,6} Thus, for example, for third-row transition-metal complexes, iridiummediated catalytic and even stoichiometric C–C bond-forming reactions are much less common than the related chemistry of nickel, palladium, and rhodium.^{6–9} However, iridium complexes have been used as valuable models for understanding the mechanisms of catalytic reactions.^{4,10} Therefore, iridium-catalyzed and iridium-mediated stoichiometric C–C bond formation became attractive subjects and have made impressive progress in recent years.¹¹

ORGANOMETALLICS

^{*}To whom correspondence should be addressed. (X.-M.H.) Fax: (+86)592-218-6628. E-mail: hejin@xmu.edu.cn. (H.P.X.) Fax: (+86)592-218-6628. E-mail: hpxia@xmu.edu.cn.

⁽¹⁾ For recent reviews, see: (a) Trost, B. M.; Toste, F. D.; Pinkerton, A. B. Chem. Rev. 2001, 101, 2067. (b) Davies, H. M. L.; Beckwith, R. E. J. Chem. Rev. 2003, 103, 2861. (c) Li, C.-J. Acc. Chem. Res. 2009, 42, 335. (d) Cárdenas, D. J. Angew. Chem., Int. Ed. 2003, 42, 384. (e) Trost, B. M.; Frederiksen, M. U.; Rudd, M. T. Angew. Chem., Int. Ed. 2005, 44, 6630. (f) Esteruelas, M. A.; López, A. M. Organometallics 2005, 24, 3584.

⁽²⁾ See for recent examples: (a) Vadola, P. A.; Sames, D. J. Am. Chem. Soc. 2009, 131, 16525. (b) Flegeau, E. F.; Schneider, U.; Kobayashi, S. Chem.—Eur. J. 2009, 15, 12247. (c) Esteruelas, M. A.; Hernández, Y. A.; López, A. M.; Oliván, M.; Oñate, E. Organometallics 2007, 26, 2193. (d) Esteruelas, M. A.; Fernández-Alvarez, F. J.; Oliván, M.; Oñate, E. J. Am. Chem. Soc. 2006, 128, 4596. (e) Bleeke, J. R.; Thananatthanachon, T.; Rath, N. P. Organometallics 2007, 26, 3904. (f) Bai, T.; Xue, P.; Zhang, L.; Ma, S.; Jia, G. Chem. Commun. 2008, 2929.

^{(3) (}a) Ritleng, V.; Sirlin, C.; Pfeffer, M. Chem. Rev. 2002, 102, 1731.
(b) Park, Y. J.; Park, J.-W.; Jun, C.-H. Acc. Chem. Res. 2008, 41, 222. (c) Jun, C.-H.; Moon, C.-W.; Lee, D.-Y. Chem.—Eur. J. 2002, 8, 2423. (d) Eguillor, B.; Esteruelas, M. A.; Oliván, M.; Oñate, E. Organometallics 2005, 24, 1428.
(e) Zhang, L.; Dang, L.; Wen, T. B.; Sung, H. H.-Y.; Willams, I. D.; Lin, Z.; Jia, G. Organometallics 2007, 26, 2849. (f) Bleeke, J. R.; Putprasert, P.; Thananatthanachon, T. Organometallics 2008, 27, 5744.

⁽⁵⁾ Takeuchi, R. Synlett 2002, 1954.

⁽⁶⁾ Li, X.; Appelhans, L. N.; Faller, J. W.; Crabtree, R. H. Organometallics 2004, 23, 3378, and references therein.

⁽⁷⁾ See for examples of Ni-catalyzed C-C formation: (a) Phapale,
V. B.; Cárdenas, D. J. Chem. Soc. Rev. 2009, 38, 1598. (b) Phapale, V. B.;
Guisán-Ceinos, M.; Buñuel, E.; Cárdenas, D. J. Chem.—Eur. J. 2009, 15,
12681. (c) Son, S.; Fu, G. C. J. Am. Chem. Soc. 2008, 130, 2756.
(8) See for examples of Pd-catalyzed C-C formation: (a) Yin, L.;

⁽⁸⁾ See for examples of Pd-catalyzed C-C formation: (a) Yin, L.; Liebscher, J. Chem. Rev. **2007**, 107, 133. (b) Beccalli, E. M.; Broggini, G.; Martinelli, M.; Sottocornola, S. Chem. Rev. **2007**, 107, 5318. (c) Aizawa, S.; Majumder, A.; Yokoyama, Y.; Tamai, M.; Maeda, D.; Kitamura, A. Organometallics **2009**, 28, 6067. (d) Shu, W.; Jia, G.; Ma, S. Org. Lett. **2009**, 11, 117. (e) Ariafard, A.; Lin, Z. J. Am. Chem. Soc. **2006**, 128, 13010.

⁽⁹⁾ See for examples of Rh-catalyzed C-C formation: (a) Colby,
D. A.; Bergman, R. G.; Ellman, J. A. *Chem. Rev.* 2010, *110*, 624. (b)
Lewis, J. C.; Bergman, R. G.; Ellman, J. A. *Acc. Chem. Res.* 2008, *41*, 1013.
(c) Hawkes, K. J.; Cavell, K. J.; Yates, B. F. *Organometallics* 2008, *27*, 4758.
(10) Atwood, J. D. *Coord. Chem. Rev.* 1988, *83*, 93.

^{(11) (}a) Chin, C. S.; Won, G.; Chong, D.; Kim, M.; Lee, H. Acc. Chem. Res. 2002, 35, 218. (b) Itoh, J.; Han, S. B.; Krische, M. J. Angew. Chem., Int. Ed. 2009, 48, 6313. (c) Barchuk, A.; Ngai, M.-Y.; Krische, M. J. J. Am. Chem. Soc. 2007, 129, 8432. (d) Paneque, M.; Posadas, C. M.; Poveda, M. L.; Rendón, N.; Mereiter, K. Organometallics 2007, 26, 3120. (e) Jiménez, M. V.; Sola, E.; Lahoz, F. J.; Oro, L. A. Organometallics 2005, 24, 2722. (f) Navarro, J.; Sola, E.; Martín, M.; Dobrionvitch, I. T.; Lahoz, F. J.; Oro, L. A. Organometallics 2004, 23, 1908. (g) Chin, C. S.; Lee, H.; Noh, S.; Park, H.; Kim, M. Organometallics 2003, 22, 2119.

In our recent work, we have developed a convenient route to prepare some interesting third-row transition-metal-containing metallacycles,^{12–15} including metallabenzenes,¹² ring-fused metallabenzenoids,¹³ metallafurans,^{12c,14} and bridged metallacycles¹⁵ starting from the reactions between transition-metal-containing complexes and alkynes. As an outgrowth of our longstanding interest in such reactions, we have studied the reaction of $HC \equiv CCH(OH)CH = CH_2^{16}$ with $[IrH(CO)Cl(PPh_3)_3]BF_4$.¹⁷ The reaction led to the formation of an iridacyclohexadiene, [Ir(CH=C(PPh₃)CH= CHCH₂)Cl(CO)(PPh₃)₂]BF₄ (1). During our investigation of the reactivity of 1, we found that it is reactive toward bromine to produce first iridacyclopentadiene 2, which can undergo intramolecular $C(sp^2)-C(sp^3)$ coupling promoted by the iridium center in the presence of excess bromine to give the fused iridacycle complex 3. Triple C-H activation utilizing cyclometalation and C-C reductive elimination is proposed as the key step for the formation of complex 3 starting from 1 in the mechanism.

Results and Discussion

Preparation of Iridacyclohexadiene [Ir(CH=C(PPh₃)-CH=CHCH₂)Cl(CO)(PPh₃)₂]BF₄ (1). Treatment of [IrHCl-(CO)(PPh₃)₃]BF₄ with HC=CCH(OH)CH=CH₂ in THF at room temperature led to the precipitation of a white solid with poor solubility, which could be isolated in 56% yield and was identified to be an iridacyclohexadiene, [Ir(CH=C-(PPh₃)CH=CHCH₂)Cl(CO)(PPh₃)₂]BF₄ (1) (Scheme 1).

The structure of **1** established by X-ray diffraction is shown in Figure 1. It confirms that complex **1** contains an almost planar six-membered ring, as reflected by the deviation of 0.0457 Å from the rms planes of the best fit. The coordination around the iridium atom can be rationalized as an octahedron with the phosphorus atoms of PPh₃ ligands occupying *trans* positions (P(1)–Ir(1)–P(2) = 176.5(1)°), while one chloride atom and one carbonyl ligand are *cis* to each other (Cl(1)–Ir(1)–C(6) = 98.9(1)°). As expected, there is a clear alternation in the C–C bond lengths around the six-membered ring; C(1)–C(2) and C(3)–C(4) are 1.335(6) and 1.330(6) Å, respectively, which are typical C=C double-bond lengths, while C(2)–C(3) and C(4)–C(5)

Figure 1. Molecular structure of complex 1 (50% probability thermal ellipsoids). Counteranion and the solvent molecules as well as some of the hydrogen atoms are omitted for clarity. Selected bond distances [Å] and angles [deg]: Ir(1)-C(1) = 2.061(4), Ir(1)-C(5) = 2.131(4), C(1)-C(2) = 1.335(6), C(2)-C(3) = 1.473(6), C(3)-C(4) = 1.330(6), C(4)-C(5) = 1.501(7), O(1)-C(6) = 1.112(6), Ir(1)-C(6) = 1.938(5), Ir(1)-P(2) = 2.377(1), Ir(1)-P(1) = 2.381(1), C(1)-Ir(1)-C(5) = 91.2(2), C(2)-C(1)-Ir(1)=129.0(3), C(1)-C(2)-C(3)=125.2(4), C(4)-C(5)-Ir(1)=118.5(3), P(2)-Ir(1)-P(1)=176.5(1), C(5)-Ir(1)-C(1)=177.7(1), CI(1)-Ir(1)-C(6)=98.9(1).

are 1.473(6) and 1.501(7) Å, respectively, consistent with the value of C–C single bonds.¹⁸ The Ir(1)–C(1) (2.061(4) Å) and Ir(1)–C(5) (2.131(4) Å) bonds compare well with those of reported iridacyclohexadiene Ir(CH=C(Me)CH=C(Me)-CH₂)(PEt₃)₃(H) (Ir(1)–C(1) 2.085(6) Å and Ir(1)–C(5) 2.189(6) Å).^{19a} All these parameters strongly support a cyclohexadiene moiety in complex **1**.

The NMR spectroscopic data of 1 are consistent with the structure shown in Figure 1. In the ¹H NMR spectrum, the characteristic IrC*H* resonance appeared at $\delta = 9.4$ ppm and the signals of the two protons bonded to C5 were observed at $\delta = 1.9$ ppm as a triplet. The signals of protons on C3 and C4 were at $\delta = 5.8$ and 4.9 ppm, respectively, which are typical for olefinic compounds. The ³¹P{¹H} NMR spectrum showed a triplet at $\delta = 18.9$ ppm attributed to CPPh₃, and the signals for IrPPh₃ were observed at $\delta = -3.1$ ppm as a doublet, with a P–P coupling constant of 6.5 Hz. In the ¹³C{¹H} NMR spectrum the metallacycle carbon signals were observed at $\delta = 175.1$ (C1), 111.0 (C2), 124.4 (C3), 131.9 (C4), and 3.4 (C5) ppm, respectively.

The formation of **1** involves nucleophilic attack of PPh₃ on the coordinated alkyne, as is the case in our previous reactions,^{12a} which is then followed by hydride insertion to give cyclometalated intermediate C. Apparently, dehydration occurred to form the iridacyclohexadiene **1** (Scheme 2).

Although metallacyclohexadienes have been proposed as key intermediates in many reactions,²⁰ the strategies employed to construct stable metallacyclohexadienes of general structure related to $\mathbf{1}$ are still rare.^{19,21-25} The first isolable example of metallacyclohexadiene complex

^{(12) (}a) Xia, H.; He, G.; Zhang, H.; Wen, T. B.; Sung, H. H. Y.; Williams, I. D.; Jia, G. *J. Am. Chem. Soc.* **2004**, *126*, 6862. (b) Gong, L.; Lin, Y.; He, G.; Zhang, H.; Wang, H.; Wen, T. B.; Xia, H. *Organometallics* **2008**, *27*, 309. (c) Gong, L.; Lin, Y.; Wen, T. B.; Zhang, H.; Zeng, B.; Xia, H. *Organometallics* **2008**, *27*, 2584. (d) Zhang, H.; Wu, L.; Lin, R.; Zhao, Q.; He, G.; Yang, F.; Wen, T. B.; Xia, H. *Chem.—Eur. J.* **2009**, *15*, 3546.

^{(13) (}a) Liu, B.; Xie, H.; Wang, H.; Wu, L.; Zhao, Q.; Chen, J.; Wen, T. B.; Cao, Z.; Xia, H. *Angew. Chem., Int. Ed.* **2009**, *48*, 5461. (b) Wang, T.; Li, S.-H.; Zhang, H.; Lin, R.; Han, F.; Lin, Y.; Wen, T. B.; Xia, H. *Angew. Chem., Int. Ed.* **2009**, *48*, 6453.

⁽¹⁴⁾ Lin, Y.; Gong, L.; Xu, H.; He, X.; Wen, T. B.; Xia, H. Organometallics 2009, 28, 1524.

⁽¹⁵⁾ Gong, L.; Wu, L.; Lin, Y.; Zhang, H.; Yang, F.; Wen, T. B.; Xia, H. *Dalton Trans.* **2007**, 4122.

⁽¹⁶⁾ Czepa, A.; Hofmann, T. J. Agric. Food. Chem. 2004, 52, 4508.

⁽¹⁷⁾ Olgemöller, B.; Bauer, H.; Beck, W. J. Organomet. Chem. 1981, 213, C57.

⁽¹⁸⁾ Dean, J. A. *Lange's Handbook of Chemistry*; McGraw-Hill: New York, 1998; Chapter 4.39.

^{(19) (}a) Bleeke, J. R.; Peng, W.-J. Organometallics **1987**, *6*, 1576. (b) Bleeke, J. R.; Rohde, A. M.; Boorsma, D. W. Organometallics **1993**, *12*, 970.

Scheme 2. Possible Mechanism for the Formation of Iridacyclohexadiene 1

[PtC(Ph)=C(Ph)C(Ph)=CHCH₂](PPh₃)₂ was obtained by Hughes from the ring-opening reactions of 3-vinyl-1-cyclopropenes with Pt(η^2 -C₂H₄)(PPh₃)₂.^{22a} The approach has also been extended to the synthesis of iridacyclohexadiene^{22b} and rhodacyclohexadiene.^{22c} Bleeke et al. have provided a different route utilizing pentadienide as the source of ring carbon atoms for synthesis of iridacyclohexadiene species,¹⁹ which can be converted to the first examples of iridabenzenes.²³ An unprecedented method for iridacyclohexadienes derived from the [2+2+1] cyclotrimerization between alkynes was also reported.²⁴ A nucleophilic aromatic addition reaction of iridabenzenes or the hydrogenation of the iridacycloheptatrienes can also lead to iridacyclohexadienes.²⁵ We documented here another convenient route to construct iridacyclohexadiene. It is also worth noting that complex 1 shows excellent air and thermal stability, in view of the fact that the solid sample remains almost unchanged when heated at 100 °C under air for 5 h.

Reaction of Iridacyclohexadiene 1 with Bromine. With the intent of exploring the reactivity of the available iridacyclohexadiene, we have tried the reactions of complex 1 with many reagents such as HBF₄, Cs₂CO₃, and PMe₃; no obvious conversion was observed at room temperature. However, the reaction of complex 1 with 1 equiv of bromine afforded the iridacyclopentadiene 2, which could subsequently undergo intramolecular $C(sp^2)-C(sp^3)$ coupling to give the fused iridacycle complex 3 in the presence of excess bromine.

A solution containing 1 and bromine in CH_2Cl_2 with a 1:1 molar ratio was stirred at room temperature for 6 h to give a

(21) (a) Hughes, R. P.; Trujillo, H. A.; Egan, J. W., Jr.; Rheingold, A. L. J. Am. Chem. Soc. **2000**, 122, 2261, and references therein. (b) Yu, T.; Sun, X.; Wang, C.; Deng, L.; Xi, Z. Chem.—Eur. J. **2005**, 11, 1895. (c) Xi, Z.; Fischer, R.; Hara, R.; Sun, W.-H.; Obora, Y.; Suzuki, N.; Nakajima, K.; Takahashi, T. J. Am. Chem. Soc. **1997**, 119, 12842. (d) Xi, Z.; Huo, S.; Noguchi, Y.; Takahashi, T. Chem. Lett. **2000**, 218.

(22) (a) Grabowski, N. A.; Hughes, R. P.; Jaynes, B. S.; Rheingold, A. L. J. Chem. Soc., Chem. Commun. **1986**, 1694. (b) Hughes, R. P.; Trujillo, H. A.; Rheingold, A. L. J. Am. Chem. Soc. **1993**, 115, 1583. (c) Egan, J. W.; Hughes, R. P.; Rhelngold, A. L. Organometallics **1987**, 6, 1578.

(24) Chin, C. S.; Kim, M.; Lee, H.; Noh, S.; Ok, K. M. Organometallics 2002, 21, 4785. Scheme 3. Reaction of Iridacyclohexadiene 1 with Bromine

light yellow solution, from which the iridacyclopentadiene $[Ir(CH=C(PPh_3)CH=C(CH_2Br))Cl(CO)(PPh_3)_2]BF_4(2)$ could be isolated in 65% yield. (Scheme 3).

An X-ray single-crystal diffraction experiment has clarified the structure of **2**. As shown in Figure 2, the geometry of the iridium center can be viewed as an octahedron in which the six coordination sites are occupied by C1 and C4, one chloride atom, one carbon atom of carbonyl ligand, and two phosphorus atoms of the phosphine ligands. The distances of Ir(1)–C(1) (2.070(8) Å) and Ir(1)–C(4) (2.068(7) Å) agree with the average for 318 recorded observation for Ir–C-(vinyl) bonds (2.052 with a SD of 0.048 Å).²⁶ The C(1)–C(2) and C(3)–C(4) bonds length of 1.342(10) and 1.380(11) Å, respectively, indicate a C–C double bond, while the C(2)–C-(3) bond length is 1.462(11) Å, supporting a C–C single bond.¹⁸

The solution NMR spectroscopic data of **2** are consistent with its solid-state structure. Particularly, the ¹H NMR spectrum of **2** showed the characteristic proton IrCH signal at $\delta = 9.1$ ppm, and the proton signal on C3 was at $\delta = 6.6$ ppm. The two protons of the exocyclic $-CH_2Br$ group were observed at $\delta = 2.6$ ppm as a broad peak. The ³¹P{¹H} NMR spectrum showed a doublet at $\delta = -10.5$ ppm (⁴J(PP) = 4.8 Hz, IrPPh₃) for the two equivalent phosphine ligands and a triplet at $\delta = 12.0$ ppm (⁴J(PP) = 4.8 Hz, CPPh₃) attributed to the phosphonium group on the ring structure. The NMR data seem to implicate the presence of a resonance contributor **2A** to the structure of **2** shown in Scheme 4.²⁷

In fact, metallacyclopentadienes have always been invoked as key intermediates for cyclotrimerization of alkynes, and their reactions toward alkynes have been studied extensively.²⁸ Especially, various organic compounds obtained from metallacyclopentadienes have been widely studied.^{24,29} Iridacyclopentadiene **2** with an exocyclic -CH₂Br group

⁽²⁰⁾ See for examples: (a) Wang, Q.; Liu, L.; Lin, C.; Sun, H.; Zhang, W.-X.; Xi, Z. *Dalton Trans.* 2009, 10433. (b) Wen, T. B.; Hung, W. Y.; Sung, H. H.-Y.; Zhou, Z.; Williams, I. D.; Jia, G. *Eur, J. Inorg. Chem.* 2007, 2693. (c) Paneque, M.; Poveda, M. L.; Rendón, N.; Alvarez, E.; Carmona, E. *Eur. J. Inorg. Chem.* 2007, 2711. (d) Hughes, R. P.; Trujillo, H. A.; Gauri, A. J. *Organometallics* 1995, *14*, 4319.

^{(23) (}a) Bleeke, J. R.; Xie, Y.-F.; Peng, W.-J.; Chiang, M. J. Am. Chem. Soc. 1989, 111, 4118. (b) Bleeke, J. R. Acc. Chem. Res. 1991, 24, 271. (c) Bleeke, J. R.; Behm, R.; Xie, Y.-F.; Chiang, M. Y.; Robinson, K. D.; Beatty, A. M. Organometallics 1997, 16, 606.

^{(25) (}a) Paneque, M.; Posadas, C. M.; Poveda, M. L.; Rendón, N.; Santos, L. L.; Álvarez, E.; Salazar, V.; Mereiter, K.; Oñate, E. *Organometallics* **2007**, *26*, 3403. (b) Paneque, M.; Posadas, C. M.; Poveda, M. L.; Rendón, N.; Salazar, V.; Oñate, E.; Mereiter, K. *J. Am. Chem. Soc.* **2003**, *125*, 9898.

⁽²⁶⁾ Based on a search of the Cambridge Structural Database, CSD version 5.31 (November 2009)

^{(27) (}a) Albright, T. A.; Gordon, M. D.; Freeman, W. J.; Schweizer, E. E. J. Am. Chem. Soc. **1976**, *98*, 6249. (b) Ackermann, M.; Pascariu, A.;

<sup>Höcher, T.; Siehl, H.-U.; Berger, S. J. Am. Chem. Soc. 2006, 128, 8434.
(28) Chin, C. S.; Lee, H. Chem.—Eur. J. 2004, 10, 4518, and refs 3 and 5 therein.</sup>

^{(29) (}a) Liu, J.; Zhang, W.-X.; Guo, X.; Hou, Z.; Xi, Z. Organometallics 2007, 26, 6812. (b) Takahashi, T.; Kuzuba, Y.; Kong, F.; Nakajima, K.; Xi, Z. J. Am. Chem. Soc. 2005, 127, 17188. (c) Xi, Z.; Sato, K.; Gao, Y.; Lu, J.; Takahashi, T. J. Am. Chem. Soc. 2003, 125, 9568. (d) Zhao, C.; Li, P.; Cao, X.; Xi, Z. Chem.—Eur. J. 2002, 8, 4292. (e) O'Connor, J. M.; Closson, A.; Hilbner, K.; Merwin, R.; Gantzel, P.; Roddick, D. M. Organometallics 2001, 20, 3710.

Figure 2. Molecular structure of complex **2** (50% probability thermal ellipsoids). Counteranion and the solvent molecules as well as some of the hydrogen atoms are omitted for clarity. Selected bond distances [Å] and angles [deg]: Ir(1)-C(1) = 2.070(8), Ir(1)-C(4) = 2.068(7), C(1)-C(2) = 1.342(10), C(2)-C(3) = 1.462(11), C(3)-C(4) = 1.380(11), C(4)-C(5) = 1.477(12), O(1)-C(6) = 1.140(9), Ir(1)-P(2) = 2.368(2), Ir(1)-P(1) = 2.378(2), Br(1)-C(5) = 1.916(8), C(1)-Ir(1)-C(4) = 79.4(3), C(2)-C(1)-Ir(1) = 115.4(6), C(1)-C(2)-C(3) = 115.4(7), C(4)-C(3)-C(2) = 116.0(7), C(3)-C(4)-Ir(1) = 113.7(6), P(2)-Ir(1)-P(1) = 173.6(1).

Scheme 4. Resonance Structures of 2

might be used as a potential starting material for the synthesis of organic species.

Interestingly, the reaction of iridacyclohexadiene 1 with an excess (10 equiv) of bromine at room temperature afforded the fused iridacycle complex [Ir(CH=C(PPh₃)

 $C(Br)=C(CHBr))(P(C_6H_4)Ph_2)Cl(CO)PPh_3]Br_3$ (3) in an isolated yield of 81%. Treatment of isolated iridacyclopentadiene 2 with an excess of bromine also led to the formation of 3.

As shown in Figure 3, complex 3 contains an iridacyclopentadiene moiety that is similar to that of complex 2. However, the coupling between a phenyl of a PPh₃ ligand and the exocyclic $-CH_2Br$ group occurred to construct a sixmembered ring, which is fused with cyclopentadiene. The single-bond distance for Br(2)-C(5) (1.895(14) Å) is comparable with that of Br(1)-C(5) (1.916(8) Å) in complex 2. The bond length of Br(1)-C(3) (1.942(12) Å) clearly indicates that bromination has occurred at C(3). The C(136)-C-(5) bond distance of 1.55(2) Å is a typical C-C single bond.¹⁸

The ¹H NMR spectrum of **3** in CD₂Cl₂ showed the characteristic IrCH proton signal at $\delta = 9.7$ ppm. The proton signal on C5 was at $\delta = 7.0$ ppm according to ¹H-¹³C HMQC. In the ³¹P{¹H} NMR spectrum, the signal at $\delta = 16.6$ (dd, ⁴*J*(PP) = 6.0 Hz, ⁴*J*(PP) = 2.8 Hz, CPPh₃) ppm was attributed to the phosphonium group on the ring structure. The two phosphine ligand signals appeared at $\delta = 1.6$ and -17.1 ppm, respectively, with a large P–P coupling

Figure 3. Molecular structure of complex **3** (50% probability thermal ellipsoids). Counteranion and the solvent molecules as well as some of the hydrogen atoms are omitted for clarity. Selected bond distances [Å] and angles [deg]: Ir(1)-C(1) = 2.052(13), Ir(1)-C(4) = 2.082(14), C(1)-C(2) = 1.358(18), C(2)-C(3) = 1.448(18), C(3)-C(4) = 1.290(17), C(4)-C(5) = 1.485(19), O(1)-C(6) = 1.141(17), Ir(1)-C(6) = 1.920(18), Ir(1)-P(2) = 2.389(4), Ir(1)-P(1) = 2.335(4), Br(1)-C(3) = 1.942(12), Br(2)-C(5) = 1.895(14), C(5)-C(136) = 1.55(2), C(1)-Ir(1)-C(4) = 77.9(5), C(2)-C(1)-Ir(1) = 116.7(10), C(1)-C(2)-C(3) = 111.6-(12), C(4)-C(3)-C(2) = 120.1(12), C(3)-C(4)-Ir(1) = 113.6(10), P(2)-Ir(1)-P(1) = 176.5(2), C(4)-C(5)-C(136) = 114.2(12).

constant of 295.1 Hz. In the ¹³C{¹H} NMR spectrum, the cyclopentadiene moiety resonances appeared at $\delta = 198.4$ (C1), 122.3 (C2), 116.4 (C3), and 149.2 (C4) ppm, respectively. The CO resonance was observed at $\delta = 174.0$ ppm.

A plausible mechanism for the formation of complexes 2 and 3 is proposed in Scheme 5. Electrophilic abstraction of the alkyl carbon (C5) of complex 1 by Br_2 followed by coordination of the double bond to the Ir center gives an η^2 -olefin coordinated iridacycle **D**. Dissociation of a PPh₃ ligand and oxidative addition of the vinyl C-H bond produces a monophosphine metal-hydride intermediate E, which then undergoes deprotonation of the hydrido ligand and recoordination of a PPh3 ligand to afford the iridacyclopentadiene 2. Electrophilic substitution reaction of 2 with bromine could produce first intermediate F and then give bromine-substituted complex G by deprotonation. Dissociation of a PPh₃ ligand from G can provide a vacant site for the oxidative addition of the ortho phenyl C-H bond of the PPh₃ ligand on Ir to form the hydrido intermediate H. Orthometalation of the aryl ring of a phosphine attached to a metal is a widely occurring reaction, and this type of reaction is one of the earliest examples of metal activation of a C-H bond.³⁰ The hydride in **H** can be removed by the excess Br_2 in the form of HBr via an electrophilic subtraction. Again, the C-H bond of the exocyclic -CH₂Br group can be activated to give an agostic species I. Subsequent abstraction of the agostic proton by counterion Br⁻ results in a seven-coordinated iridium species J. Eventually, reductive elimination of the two

^{(30) (}a) Ryabov, A. D. *Chem. Rev.* **1990**, *90*, 403. (b) Dehand, J.; Pfeffer, M. *Coord. Chem. Rev.* **1976**, *18*, 327. (c) Bruce, M. I. *Angew. Chem., Int. Ed. Engl.* **1977**, *16*, 73. (d) Cooper, A. C.; Huffman, J. C.; Caulton, K. G. *Organometallics* **1997**, *16*, 1974. (e) Huang, Y.-H.; Huang, W.-W.; Lin, Y.-C.; Huang, S.-L. *Organometallics* **2010**, *29*, 38.

hydrocarbyl ligands from the Ir center and recoordination of a PPh₃ ligand afford the $C(sp^2)-C(sp^3)$ coupling product 3.

In an attempt to get some insight into the mechanism for the formation of 3, we have tried to monitor the reaction of 2 with different amounts of bromine by NMR. Upon treatment of 2 with 1 or 2 equiv of bromine at room temperature, no appreciable reaction could be observed even after 3 days. When the reaction of 2 with 3 equiv of bromine in CDCl₃ was monitored by ³¹P{¹H} NMR, two sets of new ³¹P signals at $\delta = 13.0(t), -14.3(d) \text{ ppm } (J(\text{PP}) = 12.0 \text{ Hz}) \text{ and } \delta =$ 11.8(t), -9.6(d) ppm (J(PP) = 4.5 Hz) started to appear simultaneously in 6 h, indicating the formation of a small amount of two new species with two equivalent phosphine ligands on metal centers, respectively. However, the reaction proceeded very slowly. As can be indicated by the *in situ* ${}^{31}P{}^{1}H$ NMR spectra, complex 2 was still the dominant species (\sim 85%) in the solution when the reaction was almost suspended after 2 days. Although further increasing the ratio of bromine could speed up the reaction at the early stage, the two newly formed species could undergo further reaction to evolve to the final product **3** in the solution, and the ${}^{31}P{}^{1}H{}$ NMR spectra for the reaction process became even more complicated. Therefore, it is difficult to isolate and characterize the intermediates from the reaction. Nevertheless, the pattern of the ³¹P{¹H} NMR signals for the two abovementioned detectable intermediates supported that bromine substitution at C(3) of 2 should take place before the orthometalation of the PPh_3 ligand for the formation of **3**.

Transformation of **I** to **J** can be formally viewed as an electrophilic substitution, in which the positively charged metal center acts as the electrophile and the agostic proton is subtracted by the Br⁻ counterion. Similar roles played by Cl⁻, which can abstract an agostic H in the electrophilic substitution mechanism, have already been postulated for the reaction of CH₄ with (bpym)PtCl₂,^{31a-c} the cycloisomerizations of bromoallenyl ketones with Au(PH₃)Cl,^{31d} as well as for the isomerization of intramolecularly coordinated η^2 -allene complex [Os{CH=C(PPh_3)C(CH₃) = η^2 -C=CH₂}-(PhCN)₂(PPh_3)₂]Cl₂ to osmabenzene [Os{CHC(PPh_3)C(CH₃)-CHCH}(PhCN)₂(PPh_3)₂]Cl₂.^{31e}

It is worthy to note that, in principle, both C–H and C–Br bonds in the –CH₂Br group of H can be possibly activated. Apparently, only C–H activation occurred in our reaction, however. Selective C–H activation in the presence of C–X bonds has been reported for Pd, Rh, Au, and Ir system.^{32–35} The reactions of the (PNP)Ir fragment with haloarenes

^{(31) (}a) Kua, J.; Xu, X.; Periana, R. A.; Goddard, W. A., III. *Organometallics* **2002**, *21*, 511. (b) Xu, X.; Kua, J.; Periana, R. A.; Goddard, W. A., III. *Organometallics* **2003**, *22*, 2057. (c) Xu, X.; Fu, G.; Goddard, W. A., III. *Organometallics* **2003**, *22*, 2057. (c) Xu, X.; Fu, G.; Goddard, W. A., III. *Organometallics* **2004**, *12*, 057. (d) Xia, Y.; Dudnik, A. S.; Gevorgyan, V.; Li, Y. *J. Am. Chem. Soc.* **2008**, *130*, 6940. (e) Gong, L.; Chen, Z.; Lin, Y.; He, X.; Wen, T. B.; Xu, X.; Xia, H. *Chem.—Eur. J.* **2009**, *15*, 6258.

⁽³²⁾ Selective C-H activation for Pd: (a) Zaitsev, V. G.; Daugulis, O. *J. Am. Chem. Soc.* **2005**, *127*, 4156. (b) Kalyani, D.; Deprez, N. R.; Desai, L. V.; Sanford, M. S. *J. Am. Chem. Soc.* **2005**, *127*, 7330.

⁽³³⁾ Selective C-H activation for Rh: (a) Gatard, S.; Celenligil-Cetin, R.; Guo, C.; Foxman, B. M.; Ozerov, O. V. J. Am. Chem. Soc. **2006**, 128, 2808. (b) Gatard, S.; Guo, C.; Foxman, B. M.; Ozerov, O. V. Organometallics **2007**, 26, 6066.

⁽³⁴⁾ Selective C-H activation for Au: Fuchita, Y.; Utsunomiya, Y.; Yasutake, M. J. Chem. Soc., Dalton Trans. 2001, 16, 2330.

⁽³⁵⁾ Selective C-H activation for Ir: (a) Zhu, Y.; Fan, L.; Chen, C.-H.; Finnell, S. R.; Foxman, B. M.; Ozerov, O. V. Organometallics 2007, 26, 6701. (b) Fan, L.; Parkin, S.; Ozerov, O. V. J. Am. Chem. Soc. 2005, 127, 16772. (c) Chotana, G. A.; Rak, M. A.; Smith, M. R., III. J. Am. Chem. Soc. 2005, 127, 10539. (d) Ben-Ari, E.; Gandelman, M.; Rozenberg, H.; Shimon, L. J. W.; Milstein, D. J. Am. Chem. Soc. 2003, 125, 4714. (e) Tellers, D. M.; Yung, C. M.; Arndtsen, B. A.; Adamson, D. R.; Bergman, R. G. J. Am. Chem. Soc. 2002, 124, 1400. (f) Ishiyama, T.; Takagi, J.; Ishida, K.; Miyaura, N.; Anastasi, N. R.; Hartwig, J. F. J. Am. Chem. Soc. 2002, 124, 390. (g) Cho, J.-Y.; Tse, M. K.; Holmes, D.; Maleczka, R. E., Jr.; Smith, M. R., III. Science 2002, 295, 305.

showed that C–H activation was favored kinetically, whereas the C–X (X = Cl, Br) activation was preferred thermodynamically.^{35b} It has also been reported that C–H activation in haloarenes is more likely to be successful with Ir (5d metal) than Rh (4d metal).^{33a}

It should also be mentioned that C–H activation and C–C reductive elimination through an Ir(V) intermediate have been recently supported both theoretically and experimentally.³⁶ In our case, the related process of C–H activation steps in the formation of complex **3** is probably promoted by the synergistic effects of iridium and bromine. Iridium can readily undergo cyclometalation and has proven effective in catalytic reactions involving C–H activation through chelation assistance.³⁷ Bromine is used as a strong oxidant and facilitates the abstraction of the hydrido ligand, which, in turn, is favorable for the subsequent electrophilic C–H activation. Additionally, previous reports of C–C reductive elimination from the iridium center usually involve vinyl–vinyl or vinyl–acyl to form a conjugated system, while $C(sp^2)-C(sp^3)$ reductive elimination reactions from iridium are still scarce.⁶

Conclusion

The thermally stable iridacyclohexadiene [Ir(CH= C(PPh₃)CH=CHCH₂)Cl(CO)(PPh₃)₂]BF₄ (1) can be easily synthesized from the reaction of readily accessible HC= CCH(OH)CH=CH₂ with [IrHCl(CO)(PPh₃)₃]BF₄. Reaction of complex 1 with 1 equiv of bromine leads to the formation of iridacyclopentadiene [Ir(CH=C(PPh₃)CH= C(CH₂Br))Cl(CO)(PPh₃)₂]BF₄ (2). When excess bromine is provided, iridacyclopentadiene 2 can subsequently undergo intramolecular C(sp²)-C(sp³) coupling between the exocyclic -CH₂Br group and a phenyl of a PPh₃ ligand at the iridium, which results in the formation of the fused

iridacycle complex [Ir(CH=C(PPh₃)C(Br)=C(CHBr))(P(C₆ H₄)Ph₂)Cl(CO)PPh₃]Br₃ (**3**). The proposed mechanism for the formation of complex **3** from **1** involves triple C–H activation as well as a rare $C(sp^2)-C(sp^3)$ reductive elimination.

Experimental Section

General Considerations. All manipulations were carried out at room temperature under a nitrogen atmosphere using standard Schlenk techniques, unless otherwise stated. Solvents were distilled under nitrogen from sodium benzophenone (ether, tetrahydrofuran) or calcium hydride (dichloromethane). The starting material [IrHCl(CO)(PPh₃)₃]BF₄¹⁷ and HC=CCH-(OH)CH=CH₂¹⁶ were synthesized by literature procedures. All the NMR spectra were recorded with a Bruker AV300 (¹H 300.1 MHz; ¹³C 75.5 MHz; ³¹P 121.5 MHz) or a Bruker AV400 (¹H 400.1 MHz; ¹³C 100.6 MHz; ³¹P 162.0 MHz) spectrometer. ¹H and ¹³C NMR chemical shifts are relative to TMS, and ³¹P NMR chemical shifts are relative to 85% H₃PO₄. Elemental analyses data were obtained on an Elementar Analysensyetem GmbH Vario EL III instrument. [Ir(CH=C(PPh₃)CH=CHCH₂)Cl(CO)(PPh₃)₂]BF₄ (1). A mixture of [IrHCl(CO)(PPh₃)₃]BF₄ (500 mg, 0.44 mmol) and HC≡CCH(OH)CH=CH₂ (37 mg, 0.45 mmol) in THF (10 mL) was stirred at room temperature for 3 days to give a white suspension. The solid was collected by filtration, washed with THF (2 × 2 mL) and Et₂O (10 mL), and then dried under vacuum (yield: 295 mg, 56%). ¹H NMR (CDCl₃, 400.1 MHz): δ 9.4 (d, ³*J*(PH) = 29.2 Hz, 1 H, IrC*H*), 6.8–7.8 (m, 45 H, PPh₃), 5.8 (dd, ³*J*(PH) = 9.6 Hz, ³*J*(HH) = 9.6 Hz, 1 H, IrCHCC*H*), 4.9 (m, 1 H, IrCH₂C*H*), 1.9 (t, ³*J*(PH) = 11.6 Hz, 2 H, IrC*H*₂) ppm. ³¹P{¹H} NMR (CDCl₃, 162.0 MHz): δ 18.9 (t, ⁴*J*(PP) = 6.5 Hz, CPPh₃), −3.1 (d, ⁴*J*(PP) = 6.5 Hz, IrPPh₃) ppm. ¹³C{¹H} NMR (CD₂Cl₂, 75.5 MHz): δ 175.1 (td, ²*J*(PC) = 11.5 Hz, ²*J*(PC) = 3.5 Hz, IrCCH), 174.6 (m, CO), 131.9 (d, ³*J*(PC) = 11.8 Hz, IrCHC(PPh₃)CHCH), 124.4 (d, ²*J*(PC) = 21.1 Hz, IrCHCCH), 111.0 (dt, ¹*J*(PC) = 71.7 Hz, ³*J*(PC) = 4.7 Hz, IrCHC(PPh₃)), 3.4 (t, ²*J*(PC) = 3.5 Hz, IrCH₂), 110.0–136.0 (m, PPh₃) ppm. Anal. Calcd (%) for C₆₀H₅₀ClOIrP₃BF₄: C 60.33, H 4.22. Found: C 60.46, H 4.58.

[Ir(CH=C(PPh₃)CH=C(CH₂Br))Cl(CO)(PPh₃)₂]BF₄ (2). A mixture of [Ir(CH=C(PPh₃)CH=CHCH₂)Cl(CO)(PPh₃)₂]-BF₄ (1) (500 mg, 0.42 mmol) and Br₂ (22 µL, 0.43 mmol) in CH_2Cl_2 (15 mL) was stirred at room temperature for 24 h to give a yellow suspension. The volume of the solution was reduced to approximately 1 mL under vacuum. Addition of diethyl ether (10 mL) to the solution gave a yellow precipitate, which was collected by filtration, washed with diethyl ether $(2 \times 5 \text{ mL})$, and dried under vacuum. The residue was purified by column chromatography (neutral alumina, eluent: dichloromethane/ acetone, 12:1) (yield: 345 mg, 65%). ¹H NMR (CDCl₃, 400.1 MHz): δ 9.1 (d, ${}^{3}J(PH) = 20.4$ Hz, 1 H, IrCH), 6.9–7.9 (m, 45 H, PPh₃), 6.6 (br, 1 H, IrCHC(PPh₃)CH), 2.6 (br, 2 H, CH₂Br) ppm. ³¹P{¹H} NMR (CDCl₃, 162.0 MHz): δ 12.0 (t, ⁴*J*(PP) = 4.8 Hz, CPPh₃), -10.5 (d, ⁴*J*(PP) = 4.8 Hz, Ir*P*Ph₃). Anal. Calcd (%) for C₆₀H₄₉IrOClBrP₃BF₄: C 56.60, H 3.88. Found: C 57.02, H 4.24.

 $[Ir(CH=C(PPh_3)C(Br)=C(CHBr))(P(C_6H_4)Ph_2)Cl(CO)PPh_3]-$ Br₃ (3). Method A: A mixture of [Ir(CH=C(PPh₃)CH= $CHCH_2$)Cl(CO)(PPh_3)₂]BF₄ (1) (500 mg, 0.42 mmol) and Br₂ (215 µL, 4.20 mmol) in CH₂Cl₂ (10 mL) was stirred at room temperature for 3 days to give a yellow suspension. The volume of the solution was reduced to approximately 1 mL under vacuum. Addition of diethyl ether (10 mL) to the solution gave a yellow precipitate, which was collected by filtration, washed with diethyl ether $(2 \times 5 \text{ mL})$, and dried under vacuum (yield: 509 mg, 81%). Method B: A mixture of [Ir(CH=C(PPh₃)CH= C(CH₂Br))Cl(CO)(PPh₃)₂]BF₄ (2) (500 mg, 0.39 mmol) and Br₂ (200 μ L, 3.90 mmol) in CH₂Cl₂ (15 mL) was stirred at room temperature for 3 days to give a yellow suspension. The volume of the solution was reduced to approximately 1 mL under vacuum. Addition of diethyl ether (10 mL) to the solution gave a yellow precipitate, which was collected by filtration, washed with diethyl ether $(2 \times 5 \text{ mL})$, and dried under vacuum (yield: 492 mg, 83%). ¹H NMR (CD₂Cl₂, 300.1 MHz): δ 9.7 (dd, ³J(PH) = $20.2 \text{ Hz}, {}^{3}J(\text{PH}) = 3.0 \text{ Hz}, 1 \text{ H}, \text{IrCH}), 7.0 (1 \text{ H}, \text{CHBr}, \text{obscured})$ by the phenyl signals and confirmed by ${}^{1}H^{-13}C$ HMQC), 6.6-7.9 (m, 44 H, PPh₃) ppm. ³¹P{¹H} NMR (CD₂Cl₂, 121.5 MHz): $\delta 16.6 (dd, {}^{4}J(PP) = 6.0 Hz, {}^{4}J(PP) = 2.8 Hz, CPPh_{3}), 1.6 (dd, {}^{2}J(PP) = 295.1 Hz, {}^{4}J(PP) = 2.8 Hz, IrPPh_{3}), -17.1 (dd, {}^{2}J(PP) = 200 Hz, {}^{4}J(PP) = 200 Hz, {$ ${}^{2}J(PP) = 295.1 \text{ Hz}, {}^{4}J(PP) = 6.0 \text{ Hz}, \text{ Ir}PPh_{3}). {}^{13}C{}^{1}H{} \text{NMR}$ plus HMQC (CD₂Cl₂, 75.5 MHz): δ 198.4 (d, ²*J*(PC) = 10.1 Hz, $IrCHC(PPh_3)$), 174.0 (m, CO), 149.2 (d, ${}^{2}J(PC) = 11.9$ Hz, IrCC(Br)), 122.3 (d, ${}^{1}J(PC) = 61.1$ Hz, CPPh₃), 116.4 (d, ${}^{3}J(PC) = 22.8 \text{ Hz}, IrCHC(PPh_{3})C(Br)), 60.7 (s, CHBr), 124.7-$ 139.7 (m, PPh₃) ppm. Anal. Calcd (%) for C₆₀H₄₆IrOBr₅ClP₃: C 47.94, H 3.08. Found: C 48.14, H 2.68.

X-ray Crystal Structures Determination of 1, 2, and 3. Crystals suitable for X-ray diffraction were grown from CH_2Cl_2 or

^{(36) (}a) Klei, S. R.; Tilley, T. D.; Bergman, R. G. J. Am. Chem. Soc. **2000**, *122*, 1816, and references therein. (b) Tamura, H.; Yamazaki, H.; Sato, H.; Sakaki, S. J. Am. Chem. Soc. **2003**, *125*, 16114. (c) Bernskoetter, W. H.; Lobkovsky, E.; Chirik, P. J. Organometallics **2005**, *24*, 4367. (d) Esteruelas, M. A.; Lahoz, F. J.; Oñate, E.; Oro, L. A.; Rodríguez, L. Organometallics **1996**, *15*, 823.

⁽³⁷⁾ Li, X.; Chen, P.; Faller, J. W.; Crabtree, R. H. *Organometallics* **2005**, *24*, 4810, and references therein.

	$1 \cdot CH_2Cl_2$	$2 \cdot 0.25 \text{CH}_2 \text{Cl}_2$	$3 \cdot 0.5 CH_2 Cl_2$
empirical formula	$C_{60}H_{50}ClIrP_{3}O$	$C_{60}H_{49}ClBrIrP_{3}O \cdot BF_{4} \cdot$	C ₆₀ H ₄₆ ClBr ₂ IrP ₃ O
	$BF_4 \cdot CH_2Cl_2$	$0.25CH_2Cl_2$	$Br_3 \cdot 0.5 CH_2 Cl_2$
fw	1194.43	1273.33	1503.12
temperature, K	223(2)	123(2)	173(2)
radiation (Mo Kα), Å	0.71073	0.71073	0.71073
cryst syst	triclinic	triclinic	triclinic
space group	$P\overline{1}$	$P\overline{1}$	$P\overline{1}$
a, Å	14.099(3)	12.1921(7)	11.8828(9)
b, Å	14.656(2)	14.7377(10)	15.1966(13)
<i>c</i> , Å	14.670(2)	15.8268(8)	17.9860(14)
α, deg	105.785(12)	91.655(5)	107.820(7)
β , deg	96.294(13)	91.188(4)	106.346(7)
γ , deg	104.262(15)	99.375(5)	97.560(7)
$V, Å^3$	2775.9(8)	2803.7(3)	2881.6(4)
Z	2	2	2
$d_{\rm calcd}, {\rm g} {\rm cm}^{-3}$	1.531	1.533	1.781
F(000)	1280	1285	1498
cryst size, mm	0.40 imes 0.25 imes 0.20	$0.40 \times 0.24 \times 0.10$	0.20 imes 0.14 imes 0.10
θ range, deg	2.21-26.00	2.74-25.00	2.05 - 25.00
reflns collected	26 0 60	33 339	24 357
indep reflns	10859	9859	10132
data/restraints/params	10859/0/667	9859/16/661	10 132/9/652
goodness-of-fit on F^2	0.998	1.005	1.039
final $R(I > 2\sigma(I))$	$R_1 = 0.0331,$	$R_1 = 0.0456,$	$R_1 = 0.0695,$
	$wR_2 = 0.0769$	$wR_2 = 0.1167$	$wR_2 = 0.1707$
<i>R</i> indices (all data)	$R_1 = 0.0499,$	$R_1 = 0.0631,$	$R_1 = 0.1169,$
	$wR_2 = 0.0828$	$wR_2 = 0.1270$	$\dot{WR}_2 = 0.1816$

CHCl₃ solutions layered with ether or hexane for all complexes. Selected crystals were mounted on top of a glass fiber and transferred into a cold stream of nitrogen. Data collections were performed on an Oxford Gemini S Ultra CCD area detector using graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å). Multiscan or empirical absorption corrections (SADABS) were applied. All structures were solved by direct methods, expanded by difference Fourier syntheses, and refined by fullmatrix least-squares on F^2 using the Bruker SHELXTL-97 program package. Non-H atoms were refined anisotropically unless otherwise stated. Hydrogen atoms were introduced at their geometric positions and refined as riding atoms. The disordered CH₂Cl₂ solvent in **2** was refined isotropically using fixed C-Cl distances and Cl-C-Cl angle restraints with site occupancy of 0.25. The hemisolvating CH₂Cl₂ molecule in **3** was refined with isotropic thermal parameters using fixed C-Cl distances and Cl-C-Cl angle restraints. CCDC-761743 (1), 761744 (2), and 761745 (3) contain the supplementary crystallographic data for this paper. Details on crystal data, data collection, and refinements are summarized in Table 1.

Acknowledgment. This work was financially supported by the National Natural Science Foundation of China (No. 20872123) and National Natural Science Funds for Distinguished Young Scholar (No. 20925208).

Supporting Information Available: X-ray crystallographic files (CIF). ORTEP views of the whole structure of 1, 2, and 3, including the anions and the solvent molecules. These materials are available free of charge via the Internet at http://pubs. acs.org.